Real-time monitoring of the Bragg-peak position in ion therapy by means of single photon detection.
نویسندگان
چکیده
For real-time monitoring of the longitudinal position of the Bragg-peak during an ion therapy treatment, a novel non-invasive technique has been recently proposed that exploits the detection of prompt gamma-rays issued from nuclear fragmentation. Two series of experiments have been performed at the GANIL and GSI facilities with 95 and 305 MeV/u (12)C(6+) ion beams stopped in PMMA and water phantoms. In both experiments, a clear correlation was obtained between the carbon ion range and the prompt photon profile. Additionally, an extensive study has been performed to investigate whether a prompt neutron component may be correlated with the carbon ion range. No such correlation was found. The present paper demonstrates that a collimated set-up can be used to detect single photons by means of time-of-flight measurements, at those high energies typical for ion therapy. Moreover, the applicability of the technique both at cyclotron and at synchrotron facilities is shown. It is concluded that the detected photon count rates provide sufficiently high statistics to allow real-time control of the longitudinal position of the Bragg-peak under clinical conditions.
منابع مشابه
Monte Carlo computation of dose deposited by carbon ions in radiation therapy
Background: High-velocity carbon ion beams represent the most advanced tool for radiotherapy of deep-seated tumors. Currently, the superiority of carbon ion therapy is more prominent on lung cancer or hepatomas. Materials and Methods: The data for lateral straggling and projected range of monoenergetic 290 MeV/u (3.48 GeV) carbon ions in muscle tissue were obtained from the stopping and range o...
متن کاملImpact of Various Beam Parameters on Lateral Scattering in Proton and Carbon-ion Therapy
Background: In radiation therapy with ion beams, lateral distributions of absorbed dose in the tissue are important. Heavy ion therapy, such as carbon-ion therapy, is a novel technique of high-precision external radiotherapy which has advantages over proton therapy in terms of dose locality and biological effectiveness.Methods: In this study, we used Monte Carlo method-based Geant4 toolkit to s...
متن کاملAssessment of secondary particles in breast proton therapy by Monte Carlo simulation code using MCNPX
Background: The present study aimed to investigate the equivalent dose in vital organs, including heart and lung, due to secondary particles produced during breast proton therapy. Materials and Methods: The numerical ORNL female-phantom was improved and simulated using the Monte Carlo MCNPX code. The depth-dose profile of proton beams with different energies was simulated. The proper energy ran...
متن کاملTissue inhomogeneity in proton therapy and investigation of its effects on BRAGG peak by using MCNPX code
Background: Hadron therapy for malignant tumor is becoming increasingly popular. There are many factors which effect on implementation of a proper treatment planning. The purpose of this work is to investigate the inhomogeneity effects as affecting factor on proton range, Full width at half maximum (FWHM) and 20% position of penumbra (P20) by MCNPX code. Materials and Methods: An inhomogeneous ...
متن کاملProton Therapy of eye using MCNPX code
Introduction: Proton radiotherapy is the one of advanced teletherapy methods. The protons deposit their maximum energy in a position called Bragg peak. Therefore, for treatment of cancer, the tumor should be placed at the Bragg peak or SOBP. The scattered photons and neutrons is a challenge in proton radiotherapy. The aim of this study is calculation of absorbed dose from scatt...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Radiation and environmental biophysics
دوره 49 3 شماره
صفحات -
تاریخ انتشار 2010